全部商品分类

您现在的位置: 全部商品分类 > 数理化学科 > 数理化学科 > 数学

风力机叶片结构设计(英文版)(精)

  • 定价: ¥299
  • ISBN:9787030593047
  • 开 本:16开 精装
  •  
  • 折扣:
  • 出版社:科学
  • 页数:480页
  • 作者:编者:王同光//李...
  • 立即节省:
  • 2019-01-01 第1版
  • 2019-01-01 第1次印刷
我要买:
点击放图片

导语

  

内容提要

  

    王同光、李慧、陈程、叶婷婷著的《风力机叶片结构设计(英文版)(精)》共分为5篇,21章节。第一篇为本书第1~3章,称为基础篇。介绍了结构工程师所需要的一些叶片结构背景信息,以便于灵活学习及应用理论基础,同时指定叶片设计基本准则和复合材料基础;第二篇为本书第4~6章,称为设计篇,介绍了叶片结构件和功能件的构型设计和详细尺寸设计;第三篇为本书第7~11章,称为方法篇,包括叶片结构校核综述及方法,结合风力机叶片的国际标准阐述叶片结构校核的要求与设计准则,对应于工字梁、薄壁杆件理论和有限元理论,分别介绍一维、二维和三维叶片结构分析方法;第四篇为本书第12~16章,称为构件篇,介绍叶片结构的基本校核内容及叶片中的复合材料构件层合结构、夹芯结构、胶接连接和螺栓连接等结构形式的分析方法;第五篇为第17~21章,称为提高篇,介绍叶片校核的高级专题部分,包括疲劳分析、抗冲击分析、断裂力学的层间分析与可靠性分析,介绍了非常规结构校核方面的分析方法;在最后一章介绍了本书中未涵盖的内容,重点分析了未来叶片的发展趋势。

目录

INTRODUCTION
Part 1  Structure Design Basis for Wind Turbine Blade
  Chapter 1  BASIC PRINCIPLES
    1.1  DESIGN COORDINATION
    1.2  DESIGN BASIS
    1.3  STRUCTURE DESIGN
    1.4  STRUCTURE WEIGHT AND COST CONTROL
  Chapter 2  COMPOSITE BASIS
    2.1  BLADE COMPOSITE STRUCTURE COMPONENTS
    2.2  BLADE STRUCTURAL MATERIAL
    2.3  REINFORCED FIBRE
    2.4  RESIN
    2.5  OTHER STRUCTURAL MATERIALS
    2.6  MATERIAL SELECTION
    2.7  MECHANICAL TEST OF COMPOSITES
      2.7.1  Testing Techniques of Composites
      2.7.2  Test Process of Composites
    2.8  MANUFACTURABILITY OF COMPOSITES FOR BLADE
  Chapter 3  STRUCTURE DESIGN BASIS
    3.1  DESIGN BASIS
      3.1.1  Airfoil Contour
      3.1.2  Load Characteristics
      3.1.3  Load-carrying Forms
    3.2  CONFIGURATION DESIGN
    3.3  STRUCTURE DESIGN PROCESS
Part 2  Structure Design for Wind Turbine Blade
  Chapter 4  STRUCTURAL COMPONENT DESIGN
    4.1  SPAR CAP DESIGN
      4.1.1  Configuration Categories for Spar Cap
      4.1.2  Spar Cap of Glass-fibre Fabric
      4.1.3  Spar Cap of Carbon-fibre Fabric
      4.1.4  Spar Cap of Laminated Bamboo-wood
      4.1.5  Spar Caps Made of Mixed Material
      4.1.6  Structure Design for Spar Caps
      4.1.7  Spar Cap Manufacturing Process Description
    4.2  DESIGN OF WEB AND FLANGE ADHESIVE BONDING
      4.2.1  Web Configuration Types
      4.2.2  Web Arrangements
      4.2.3  Web Structure Design
      4.2.4  Prospect of Web Processing
    4.3  SKIN DESIGN
      4.3.1  Configuration Design for Skin
      4.3.2  Summary of Skin Process
    4.4  SANDWICH STRUCTURE DESIGN
      4.4.1  Sandwich Structure Configurations
      4.4.2  Sandwich Structure Design
      4.4.3  Summary of Sandwich Structure Processes
    4.5  LEADING EDGE UD DESIGN AND LEADING EDGE ADHESIVE BONDING
      4.5.1  Structure Design for Leading edge UD
      4.5.2  Adhesive Bonding Forms
    4.6  TRAILING EDGE UD DESIGN AND TRAILING EDGE ADHESIVE BONDING
      4.6.1  Design for Trailing Edge UD Configuration
      4.6.2  Structure Design for Trailing Edge
      4.6.3  Summary of Trailing Edge Processing
    4.7  ROOT REINFORCEMENT DESIGN
      4.7.1  Structure Design for Root Reinforcement
      4.7.2  Process Overview of Blade Root Reinforcing Layer
    4.8  CONNECTION DESIGN OF BLADE ROOT
      4.8.1  Different Method for Mounting Bolt
      4.8.2  Configuration Design of Embedded Bolts
      4.8.3  Structure Design for Embedded Bolts
      4.8.4  Structure Design for T-bolt
      4.8.5  Overview of Blade Root Process Test
    4.9  DISCUSSION ABOUT OPTIMIZATION DESIGN
      4.9.1  Influence of Optimization and Non-optimization
      4.9.2  Structure Index
  Chapter 5  DESIGN OF FUNCTIONAL PARTS
    5.1  BLADE TIP DESIGN
    5.2  LIGHTNING PROTECTION DESIGN
      5.2.1  Air-termination System
      5.2.2  Lightning Protection Tests on Blades
    5.3  GEL COATS AND PAINTS
    5.4  DESIGN OF REINFORCED LAYERS FOR TRANSPORTATION
    5.5  BLADE ROOT COVER DESIGN
    5.6  DESIGN OF BALANCING CHAMBERS
    5.7  RAIN DEFLECTOR DESIGN
    5.8  PE PIPES CONNECTED WITH DOUBLE WEBS
    5.9  OTHER DESIGNS
Part 3  Structure Design Methods for Wind Turbine Blade
  Chapter 6  STRUCTURE VERIFICATION PRINCIPLES
    6.1  GENERAL PRINCIPLES OF STRUCTURE VERIFICATION
    6.2  BLADE STRUCTURE VERIFICATION METHODS
    6.3  GENERAL INTRODUCTION OF BLADE STRUCTURE VERIFICATION
      6.3.1  Blade Topological Graph
      6.3.2  Stress Characteristics of Blade Components
    6.4  STRENGTH ANALYSIS
    6.5  STABILITY ANALYSIS
    6.6  DEFORMATION ANALYSIS
    6.7  DYNAMIC CHARACTERISTIC ANALYSIS
    6.8  ADHESIVE BONDING ANALYSIS
    6.9  INTERLAMINAR ANALYSIS
    6.10  FATIGUE ANALYSIS
    6.11  ADVANCED ANALYSIS
  Chapter 7  UNIDIMENSIONAL METHOD
    7.1  I-BEAM THEORY
    7.2  SIMPLIFICATION OF BLADE CROSS SECTION MODEL
    7.3  CALCULATION OF BLADE CROSS SECTION STRENGTH
    7.4  STRENGTH ANALYSIS OF BLADE CROSS SECTION
    7.5  CALCULATION OF BLADE BENDING DEFORMATION
    7.6  DEFLECTION ANALYSIS OF BLADE SECTION
    7.7  DEVIATION ANALYSIS WITH UNIDIMENSIONAL METHOD
    7.8  APPLICATION DEVELOPMENT OF UNIDIMENSIONAL METHOD
  Chapter 8  2D METHOD
    8.1  BLADE STRENGTH CALCULATION
      8.1.1  Normal Stress Calculation of Thin-walled Airfoil Structure
      8.1.2  Shear Stress Calculation of Thin-walled Airfoil
      8.1.3  Calculation of Blade Deflection
    8.2  CALCULATION OF BLADE NATURAL FREQUENCY AND CHARACTERISTIC MODE
    8.3  EQUIVALENT FATIGUE LOAD METHOD FOR FATIGUE DAMAGE CALCULATION
    8.4  2D ENGINEERING ALGORITHM
    8.5  FINITE ELEMENT METHOD OF 2D UNIFORM CROSS SECTION
      8.5.1  Finite element analysis of 2D shell model
      8.5.2  Finite element verification of 2D solid model
  Chapter 9  3D METHOD
    9.1  FINITE ELEMENT ANALYSIS OF WIND TURBINE BLADES
    9.2  FINITE ELEMENT MODELING OF BLADES
      9.2.1  Geometrical Shape
      9.2.2  The Coordinate System
      9.2.3  Structural Configuration
      9.2.4  Meshing
      9.2.5  Element Normal and Element Coordinate System
      9.2.6  Material Properties
      9.2.7  Direction of Material
      9.2.8  Spanwise Divisions
      9.2.9  Element Properties
      9.2.10  Mass of a Blade
    9.3  LOCAL REFINEMENT OF BLADE FINITE ELEMENT MODEL
      9.3.1  Refinement of TE Model
      9.3.2  Adhesive Bonding of Web Flange and Shell
      9.3.3  Blade Root Model
      9.3.4  Adjacent Component of Root Model
      9.3.5  Point Mass of Blade
    9.4  FINITE ELEMENT BOUNDARY AND LOADING OF BLADE
      9.4.1  Finite Element Boundary Conditions
      9.4.2  Ultimate Loading Form in Blade FEA
      9.4.3  Ultimate Envelop Load
      9.4.4  Concentrated Force Ultimate Loading
      9.4.5  Distributed Ultimate Loading
      9.4.6  Loading Type of Test Load
      9.4.7  Gravitational Load
      9.4.8  Fatigue Load
  Chapter 10  OTHER METHODS
    10.1  PROCEDURE OF BLADE MOULDING
    10.2  BLADE DATABASE
Part 4 Structure Component Design Methods for Wind Turbine Blade
  Chapter 11  BASIC VERIFICATION ANALYSIS
    11.1  BASIC VERIFICATION OF BLADE
    11.2  SAFETY FACTOR OF STRUCTURE VERIFICATION
      11.2.1  Safety Factor of Structure Verification Defined in GL
      11.2.2  Safety Factor of DNV Structure Verification
    11.3  STRENGTH VERIFICATION
      11.3.1  Failure Criterion
      11.3.2  Overall Ultimate Strength Verification
      11.3.3  Strength Verification of Hoisting Condition
    11.4  STIFFNESS VERIFICATION
      11.4.1  Criterion of Deflection Analysis
      11.4.2  Stiffness Distribution
      11.4.3  Tip Deflection
    11.5  ANALYSIS OF VIBRATION CHARACTERISTICS
      11.5.1  Natural Frequency and Mode of Vibration
      11.5.2  Campbell Chart of Blade Vibration
    11.6  OVERALL BUCKLING OF BLADE
  Chapter 12  LAMINATE ANALYSIS
    12.1  THEORY OF LAMINATE
      12.1.1  The Theory of Shell Theory to Composite Material
      12.1.2  Feature of Laminate
      12.1.3  Performance and Stiffness of Laminate
      12.1.4  The Strength Analysis of Laminate
      12.1.5  The Design Value for Structure
    12.2  DESIGN OF LAMINATE
      12.2.1  The Stiffness Prediction and Design of Laminate
      12.2.2  Preliminary Design of Laminate
      12.2.3  Consideration of Environmental Influence
    12.3  BUCKLING OF THE LAMINATE
      12.3.1  Buckling Calculation Method
      12.3.2  Boundary Conditions
      12.3.3  Examples of Theoretical Solution
      12.3.4  Engineering Algorithm
      12.3.5  FEM Example
      12.3.6  FEA of Laminate
    12.4  FIBRE FAILURE ANALYSIS
    12.5  RESIN FAILURE ANALYSIS
    12.6  APPLICATION OF LAMINATES ON BLADES
  Chapter 13  ANALYSIS OF SANDWICH STRUCTURE
    13.1  BASIS OF SANDWICH STRUCTURE
    13.2  SANDWICH STRUCTURE DEAIGN
      13.2.1  Design Principle of Sandwich Structure
      13.2.2  Design Key Points
    13.3  ANALYSIS OF SANDWICH STRUCTURE
      13.3.1  Basic Parameters
      13.3.2  Analysis of Local Failure
    13.4  ANALYSIS METHODS OF SANDWICH STRUCTURE
      13.4.1  Sandwich with Isotropic Panels
      13.4.2  Sandwich with Orthotropic Panels
      13.4.3  Engineering Algorithm of Local Instability
      13.4.4  Finite Element Analysis
      13.4.5  Local Secondary Analysis Method
    13.5  APPLICATION OF SANDWICH STRUCTURE ON BLADES .
    13.6  ANALYSIS OF WEB BUCKLING
    13.7  ANALYSIS OF BLADE LOCAL BUCKLING
    13.8  BUCKLING ANALYSIS OF BLADE CROSS SECTION
  Chapter 14  ANALYSIS OF ADHESIVE BONDING
    14.1  ADHESIVE BONDING
      14.1.1  Adhesive Characteristics
      14.1.2  Advantages and Disadvantages of Composite Bonding
    14.2  DESIGN OF ADHESIVE BONDING
      14.2.1  General Design Principles
      14.2.2  Basic Failure Modes
      14.2.3  Basic Bonding Methods
      14.2.4  Selection of Geometric Parameters
      14.2.5  Fibre Direction
      14.2.6  Design of Bonding Detail
    14.3  BONDING ENGINEERING ALGORITHM
      14.3.1  Calculation of Static Strength
      14.3.2  Durability Analysis
    14.4  ANALYSIS OF ADHESIVE BONDING
    14.5  ADHESIVE BONDING APPLICATION ON BLADE
      14.5.1  Bonding between Web Flanges and Shells
      14.5.2  Bonding of Trailing Edge
      14.5.3  Control of Bonding Processing
  Chapter 15  ANALYSIS OF BOLTED CONNECTION
    15.1  STRUCTURE VERIFICATION OF BLADE ROOT WITH MBEDDED INSERTS
      15.1.1  Types of the Root End
      15.1.2  Global Finite Element Analysis
      15.1.3  Local Analysis of Contact Surface
    15.2  STRUCTURE VERIFICATION OF T-BOLT PROCESSING
      15.2.1  Structure Analysis Procedure
      15.2.2  Global Finite Element Analysis
      15.2.3  Bolt Engineering Method
Part 5  Special Subject for Structure Design of Wind Turbine Blade
  Chapter 16  FATIGUE ANALYSIS
    16.1  THEORETICAL BASIS
      16.1.1  Cyclic Load
      16.1.2  Fatigue Lifetime
      16.1.3  Stress ratio
      16.1.4  S-N curve
      16.1.5  Diagram of Fatigue Limit
    16.2  FATIGUE OF COMPOSITES
      16.2.1  Model of fatigue accumulated damage
      16.2.2  Estimation Method of Fatigue Lifetime
    16.3  VERIFICATION PROCESS OF BLADE FATIGUE
    16.4  FATIGUE LOAD
    16.5  SELECTION OF CRITICAL POINT OF FATIGUE
    16.6  METHODS OF BLADE FATIGUE VERIFICATION
      16.6.1  Coordinate System
      16.6.2  Transformation Matrix of Stress
      16.6.3  Equivalent Stress
      16.6.4  Rain-flow Counting
      16.6.5  Safety Factor of Fatigue Analysis
    16.7  IDENTIFICATION OF BLADE FATIGUE DAMAGE
  Chapter 17  ANALYSIS OF IMPACT RESISTANCE OF BLADE
    17.1  ANALYSIS TECHNIQUES OF IMPACT DAMAGE
      17.1.1  Methods of Engineering Analysis
      17.1.2  Techniques of Load Processing
    17.2  METHODS OF EXPLICIT TIME INTEGRATION
    17.3  CONSTITUTIVE RELATION OF MATERIAL
      17.3.1  Material of Bird-model Impact
      17.3.2  Material of Hail Impact
    17.4  VERIFICATION OF RESISTANCE FOR IMPACT OF BLADE
      17.4.1  Impact-resistance Model of Blade
      17.4.2  Analysis of Blade Resistance for Impact
    17.5  TEST OF BLADE RESISTANCE FOR IMPACT
  Chapter 18  ANALYSES OF FRACTURE MECHANICS AND INTER LAMINAR
    18.1  FRACTURE ANALYSIS of COMPOSITE MATERIALS
    18.2  MAIN PARAMETERS IN FRACTURE MECHANICS
    18.3  FRACTURE MECHANICS CALCULATION METHOD
      18.3.1  Theoretical Solution of a Center Cracked Finite Width Plate
      18.3.2  The Stress Intensity Factor and Extrapolation
      18.3.3  Domain Method J-integration and Equivalent Integration
      18.3.4  Strain energy release rate and virtual crack method
    18.4  DUMMY NODE FRACTURE ELEMENT
      18.4.1  Dummy Node Fracture Element of Linear Crack
      18.4.2  Dummy Node Fracture Element of a Plane Crack
    18.5  INTERLAMINAR STRESS OF COMPOSITES
      18.5.1  Shear Stress Distribution of Interlaminar Interface
      18.5.2  Interlaminar Shear Stress Distribution Along Thickness Direction
      18.5.3  Interlaminar Normal Stress
      18.5.4  Distribution of Axial Displacement on the Surface of Laminates
    18.6  INTERLAMINAR FAILURE AND FRACTURE FAILURE OF BLADE
  Chapter 19  RELIABILITY ANALYSIS
    19.1  COMPOSITES DAMAGE TOLERANCE
      19.1.1  Overview
      19.1.2  Three Elements of Damage Tolerance
    19.2  RELIABILITY
      19.2.1  Technical Basis of Reliability
      19.2.2  Reliability Evaluation Index
      19.2.3  Reliability Design of Structural System
  Chapter 20  FULL-SCALE TESTING OF BLADES
    20.1  OVERVIEW
    20.2  MATERIAL TESTING AND COMPONENT TESTING
    20.3  INTRODUCTION OF FULL-SCALE TESTING OF BLADES
      20.3.1  Basic Principle and Relevant Standards
      20.3.2  Test Items and Procedures
    20.4  BLADE DATA AND REQUIREMENTS FOR SPECIMENS
      20.4.1  Blade Data
      20.4.2  Requirements for Specimens
    20.5  TEST STAND
      20.5.1  Loading Directions
      20.5.2  Loading Types
      20.5.3  Other Devices and Tooling
    20.6  DESIGN LOAD AND TEST LOAD
    20.7  FAILURE MODES
    20.8  MASS AND DYNAMIC PROPERTY TESTS
    20.9  STATIC STRENGTH TEST
    20.10  FATIGUE TEST
    20.11  DESTRUCTIVE TEST
  Chapter 21  SUMMARY AND PROSPECT
    21.1  DESIGN AND PROCEDURES
    21.2  VERIFICATION AND EXPERIENCE
    21.3  HORIZONS BEYOND DESIGN AND VERIFICATION
    21.4  PROSPECTS FOR THE FUTURE
    21.5  BACK TO THE ORIGIN-STRUCTURAL MECHANICS OF COMPOSITE THIN-WALLED BARS
REFERENCES
Appendix A  COORDINATE SYSTEM
Appendix B  BLADE WB45.
INDEX