## 代数(影印版)(英文版)

• 定价： ￥149
• ISBN：9787519255695
• 开 本：16开 平装
• 作者：(美)T.W.亨格福德
• 立即节省：
• 2019-03-01 第1版
• 2019-03-01 第1次印刷

### 内容提要

本书是Springer《数学研究生教材》第73卷，初版于1974年，30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次，由此证明这是一部经典的研究生教材。全书取材适中，论述清晰，自成系统。本书在一些问题的处理上有其独到之处，如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。
目次：群和群的结构；环；模；域和伽罗瓦理论；域的结构；线性代数；交换环和模；环的结构；范畴论。
读者对象：数学专业研究生和科研人员。

### 目录

Preface
Ackno w/edgmen ts
Suggestions on the Use of This Book
Introduction: Prerequisites and Preliminaries
1. Logic
2. Sets and Classes
3. Functions
4. Relations and Partitions
5. Products
6. The Integers
7. The Axiom of Choice, Order and Zorn's Lemma
8. Cardinal Numbers
Chapter I: Groups
1. Semigroups, Monoids and Groups
2. Homomorphisms and Subgroups
3. Cyclic Groups
4. Cosets and Counting
5. Normality, Quotient Groups, and Homomorphisms
6. Symmetric, Alternating, and Dihedral Groups
7. Categories: Products, Coproducts, and Free Objects
8. Direct Products and Direct Sums
9. Free Groups, Free Products, Generators & Relations
Chapter I1: The Structure of Groups
l. Free Abelian Groups
2. Finitely Generated Abelian Groups
3. The KruU-Schmidt Theorem
4. The Action of a Group on a Set
5. The Sylow Theorems
6. Classification of Finite Groups
7. Nilpotent and Solvable Groups
8. Normal and Subnormal Series
Chapter Ⅲ: Rings
1. Rings and Homomorphisms
2. Ideals
3. Factorization in Commutative Rings
4. Rings of Quotients and Localization
5. Rings of Polynomials and Formal Power Series
6. Factorization in Polynomial Rings
Chapter IV: Modules
1. Modules, Homomorphisms and Exact Sequences
2. Free Modules and Vector Spaces
3. Projective and lnjective Modules
4. Horn and Duality
5. Tensor Products
6. Modules over a Principal Ideal Domain
7. Algebras
Chapter V: Fields and Galois Theory
I. Field Extensions Appendix: Ruler and Compass Constructions
2. The Fundamental Theorem Appendix: Symmetric Rational Functions
3. Splitting Fields, Algebraic Closure and Normality Appendix: The Fundamental Theorem of Algebra
4. The Galois Group of a Polynomial
5. Finite Fields
6. Separability:
7. Cyclic Extensions
8. Cyclotomic Extensions
9. Radical Extensions Appendix: The General Equation of Degree n
Chapter Ⅵ: The Structure of Fields
1. Transcendence Bases
2. Linear Disjointness and Separability
Chapter Ⅶ: Linear Algebra
1.Matrices and Maps
2. Rank and Equivalence Appendix: Abelian Groups Defined by Generators and Relations
3. Determinants
4. Decomposition of a Single Linear Transformation and Similarity.
5. The Characteristic Polynomial, Eigenvectors and "Eigenvalues
Chapter Ⅷ: Commutative Rings and Modules
1. Chain Conditions
2. Prime and Primary Ideals
3. Primary Decomposition
4. Noetherian Rings and Modules
5. Ring Extensions
6. Dedekind Domains
7. The Hilbert NullsteUensatz
Chapter IX: The Structure of Rings
1. Simple and Primitive Rings