全部商品分类

您现在的位置: 全部商品分类 > 工业技术 > 一般工业技术 > 一般工业技术

Molecular Simulation on Cement-Based Materials(精)

  • 定价: ¥150
  • ISBN:9787030625908
  • 开 本:16开 精装
  •  
  • 折扣:
  • 出版社:科学
  • 页数:197页
  • 作者:Dongshuai Hou
  • 立即节省:
  • 2019-01-01 第1版
  • 2019-01-01 第1次印刷
我要买:
点击放图片

导语

  

内容提要

  

    本书主要介绍分子动力学的基本理论以及在水泥基材料的微观结构、耐久性以及纳米科技改性方面的研究应用,对于水泥基材料的微结构调控、材料的设计与性能优化具有较高的理论指导意义。本书主要内容包括:水泥基材料的纳观特性、分子动力学理论及适用于水泥基体系的模拟方法、水泥水化产物的分子模型、水泥基材料化学组分-分子结构-性能的关联机制、基于分子动力学方法离子和水分在纳米孔道中的传输研究、矿物掺合料调控水泥基材料的性能,碳纳米材料改性水泥基材料。

目录

1  Background and Objectives
  1.1  Introduction
  1.2  Research Motivation of Atomistic-Scale Simulation
  1.3  Outline of Book
  References
2  Introduction to Modeling of Cement Hydrate at Nanoscale
  2.1  Formation of the C-S-H Gel
  2.2  Experimental Characterization of the C-S-H Gel
    2.2.1  Morphology
    2.2.2  Ca/Si Ratios
    2.2.3  Water States
    2.2.4  Density and Water Content
    2.2.5  Layered Feature
    2.2.6  Silicate Polymerization
    2.2.7  Mechanical Properties
  2.3  Mineral Analogues of C-S-H Gel
    2.3.1  Tobermorite
    2.3.2  Jennite
  2.4  Models of the C-S-H Gel
    2.4.1  Models for the Nanostructure and Morphology
    2.4.2  Models for the Atomic Structure
    2.4.3  Models Based on Molecular Simulation
  2.5  Chapter Summary
  References
3  Introduction to Simulation Techniques on the Cement-Based Materials
  3.1  Introduction to the Molecular Simulation Method
  3.2  Molecular Mechanics
    3.2.1  Potential Forms
    3.2.2  Energy Minimization
    3.2.3  Elastic Properties
  3.3  Molecular Dynamics
    3.3.1  Ensembles
    3.3.2  MD Algorithm
    3.3.3  MD Trajectories Analysis
  3.4  Grand Canonical Monte Carlo (GCMC)
  3.5  Chapter Summary
  References
4  Modeling the Calcium Silicate Hydrate by Molecular Simulation
  4.1  Introduction
  4.2  Computational Details
  4.3  Experimental Validation of the C-S-H Model
  4.4  Molecular Structure of C-S-H Model
    4.4.1  Layered Structure
    4.4.2  Local Structure of Silicon
    4.4.3  Local Structure of Calcium Atoms
    4.4.4  Local Structure of Water Molecule
  4.5  Mechanical Properties of C-S-H Gel
    4.5.1  Stress-Strain Relations
    4.5.2  Chemical Reaction in the Deformed C-S-H Gel
  4.6  Ca/Si Ratio Influence
    4.6.1  Model Construction at Different Ca/Si Ratios
    4.6.2  Molecular Structures at Different Ca/Si Ratios
    4.6.3  Mechanical Properties at Different Ca/Si Ratios
  4.7  Chapter Summary
  References
5  Molecular Simulation of Water and Ions Migration in the Nanometer Channel of Calcium Silicate Phase
  5.1  Introduction
  5.2  Adsorption Model for Water and Ions Confined in C Gel Pore
    5.2.1  Computational Details
    5.2.2  Atomic Intensity and Orientation Files for Water Confined in Gel Pore
    5.2.3  H-Bond Network and Coordinated Atoms
    5.2.4  Diffusion Coefficient
    5.2.5  Interaction Between Ions and Tobermorite Substrate
  5.3  Capillary Transport Model for Ions and Water in the Gel Pore
    5.3.1  Computational Details
    5.3.2  Capillary Adsorption of NaC1 Solution
    5.3.3  Local Structure of Water and Ions in the Gel Pore
    5.3.4  Dynamic Properties of Atoms in the Gel Pore
    5.3.5  Pore Size Effect on Capillary Transport
  5.4  Chapter Summary
  References
6  Models for the Cross-Linked Calcium Aluminate Silicate Hydrate (C-A-S-H) Gel
  6.1  Background of Cross-Linked C-A-S-H Gel
  6.2  Model Construction
  6.3  Connectivity Factor
  6.4  Coordination Number of A1 Atoms
  6.5  Structure and Dynamic Properties of Interlayer Water Molecules
  6.6  Stress-Strain Relation
  6.7  Deformation of the Structure
  6.8  Chapter Summary
  References
7  Molecular Dynamics Study on Cement-Graphene Nanocomposite
  7.1  Introduction
  7.2  Simulation Methods
    7.2.1  Force Field
    7.2.2  Model Construction
  7.3  Molecular Structural Properties of Graphene/GO and C Model
    7.3.1  Molecular Structure of Graphene/GO and C
    7.3.2  Local Structure of the Graphene and GO in the Interlayer
    7.3.3  Local Structure of Interlayer Ca and A1 Ions
    7.3.4  The Local Structure of Water and Hydroxyl Groups
  7.4  Dynamic Properties of the Graphene/GO and C-S-H Model
    7.4.1  Dynamic Properties of Carbon Atoms
    7.4.2  Dynamic Properties for Hydrogen Atoms
    7.4.3  Time Correlation Function for Chemical Bonds
  7.5  Reinforcement Mechanism of G/Go on C
  7.6  Chapter Summary
  References
8  The Future and Development Trends of Computational Chemistry Applied in Concrete Science
  8.1  Force Field Database Development for Cement-Based Material
  8.2  Mesoscale Modeling of the Cement Hydrate by Coarse Grain Molecular Dynamics
  8.3  Molecular Modeling of Low Carbon Geopolymer Binders
  8.4  Solutions of Concrete Structural Engineering from Molecular Dynamics
  References