全部商品分类

您现在的位置: 全部商品分类 > 工业技术 > 建筑科学、水利工程 > 建筑科学

Size Effect in Concrete Materials and Structures(精)

  • 定价: ¥388
  • ISBN:9787030676962
  • 开 本:16开 精装
  •  
  • 折扣:
  • 出版社:科学
  • 页数:602页
  • 作者:编者:Xiuli Du//L...
  • 立即节省:
  • 2021-01-01 第1版
  • 2021-01-01 第1次印刷
我要买:
点击放图片

导语

  

内容提要

  

    本书系统介绍了作者及其研究团队近十多年来在混凝土材料及构件尺寸效应研究方面的研究成果,全书共分为九章。本书系统回答了3个重要问题:1)混凝土动态尺寸效应规律,即应变率如何影响尺寸效应;2)构件层次尺寸效应与材料层次尺寸效应的关联性;3)构件层次尺寸效应律的构建。本书内容翔实,实用性强,非常适合于可供从事混凝土工程结构设计方面的工程技术人员和科技人员等,以及土木工程专业高年级本科生和研究生阅参考。

目录

1  Introduction
  1.1  Concept of Size Effect
  1.2  Source of Size Effect
  1.3  Size Effect Laws
    1.3.1  Static Size Effect of Concrete Materials
    1.3.2  Dynamic Size Effect of Concrete Materials
    1.3.3  Size Effect of Concrete Members
  1.4  Scope
  References
2  Concrete on the Meso-level
  2.1  Coarse Aggregate Particles
  2.2  Mortar Matrix
  2.3  Interfacial Transitional Zone (ITZ)
  References
3  Methodology: Meso-Scale Simulation Approach
  3.1  Mesoscopic Numerical Methods
    3.1.1  Lattice Model
    3.1.2  Stochastic Mechanical Property Model
    3.1.3  Random Particle Model
    3.1.4  Rigid Body-Spring Model
    3.1.5  Random Aggregate Model
    3.1.6  Mesoscopic Element Equivalence Method
    3.1.7  Other Numerical Methods
  3.2  Geometric Model
    3.2.1  Random Aggregate Model of Concrete
    3.2.2  Steel Rebar
    3.2.3  FRP Sheet
    3.2.4  Steel Tube
  3.3  Material Model
    3.3.1  Damaged Plasticity Model
    3.3.2  Elastoplastic Model
    3.3.3  Elastic-Brittle Model
  3.4  Strain Rate Effect
    3.4.1  Code Recommendations
    3.4.2  Hao Hong's Model
  3.5  Interaction Model
    3.5.1  Node-to-Node Interaction Model
    3.5.2  Surface-to-Surface Contact Model
  3.6  Validation of Simulation Method
    3.6.1  Material
    3.6.2  Beam
    3.6.3  Column
    3.6.4  Beam-to-Column Joint
  3.7  Summary
  References
4  Static Size Effect in Concrete Materials
  4.1  Tensile Strength of Concrete Materials
    4.1.1  Morphological Material Model for Concrete
    4.1.2  Multi-grade Analysis Method for Cementitious
  Systems
    4.1.3  Validation and Analysis
  4.2  Splitting-Tensile Strength of Concrete Materials
    4.2.1  Experimental Analysis
    4.2.2  Numerical Analysis
  4.3  Flexural-Tensile Strength of Concrete Materials
    4.3.1  Experimental Analysis
    4.3.2  Numerical Analysis
  4.4  Compressive Strength of Concrete Materials
    4.4.1  Size Effect of Lightweight Aggregate Concrete
    4.4.2  Size Effect on Bi-axial Compressive Behavior
  4.5  Novel Size Effect Law Considering MAS
  4.6  Summary
  References
5  Dynamic Size Effect in Concrete Materials
  5.1  Dynamic Size Effect on Splitting-Tensile Strength
    5.1.1  Dynamic Failure Behavior
    5.1.2  Influence of Strain Rate
  5.2  Dynamic Size Effect on Tensile Strength
    5.2.1  Dynamic Failure Behavior
    5.2.2  Influence of Strain Rate
  5.3  Dynamic Size Effect on Compressive Strength
    5.3.1  Dynamic Failure Behavior
    5.3.2  Influence of Strain Rate
  5.4  Influence of Meso-Structure
    5.4.1  Influence of Aggregate Content
    5.4.2  Influence of Maximum Aggregate Size
    5.4.3  Influence of Aggregate Type
  5.5  Influence of Initial Loads
    5.5.1  Dynamic Compressive Failure
    5.5.2  Dynamic Size Effect
  5.6  Static-Dynamic Unified Size Effect Law
    5.6.1  Basic Assumptions
    5.6.2  Dynamic Size Effect Law for Concrete
    5.6.3  Validation of the Theoretical Formula
  5.7  Summary
  References
6  Size Effect in Shear and Flexure Failure of Concrete Beams
  6.1  Shear Failure in Reinforced Concrete Beams Without Stirrups
    6.1.1  Failure of Ordinary Concrete Beam
    6.1.2  Failure of Lightweight-Aggregate Concrete Beams
  6.2  Shear Failure in Reinforced Concrete Beams with Stirrups
    6.2.1  Seismic Tests on Shear Failure of RC Beams
    6.2.2  Simulations on Shear Failure of RC Beams
  6.3  Shear Failure in CFRP-Wrapped Concrete Beams
    6.3.1  CFRP-Strengthened Ordinary Concrete Beams
    6.3.2  CFRP-Strengthened Lightweight-Aggregate Concrete
  Beams
  6.4  Flexural Failure in Reinforced Concrete Beams
    6.4.1  Seismic Tests on Flexural Failure of RC Beams
    6.4.2  Simulations on Flexural Failure of RC Beams
  6.5  Size Effect Law for Shear Failure in Concrete Beams
    6.5.1  Basic Assumptions
    6.5.2  Size Effect Law for Shear Strength
    6.5.3  Validation of the Theoretical Formula
  6.6  Summary
  References
7  Size Effect in Compressive Failure Behavior of Concrete
  Columns
  7.1  Axial Compressive Failure of Normal-Strength RC Column
    7.1.1  Experimental Program
    7.1.2  Results and Discussions
  7.2  Axial Compressive Failure of High-Strength RC Column
    7.2.1  Experimental Program
    7.2.2  Results and Discussions
  7.3  Eccentrically Compressive Failure of Normal-Strength RC
  Column
    7.3.1  Experimental Investigations
    7.3.2  Numerical Investigations
  7.4  Eccentrically Compressive Failure of High-Strength
  RC Column
    7.4.1  Experimental Investigations
    7.4.2  Numerical Investigations
  7.5  Compressive Failure of Stirrups-Confined Concrete Column
    7.5.1  Experimental Investigations of Circular Concrete
    7.5.2  Experimental Investigations of Square Concrete
  Column
    7.5.3  Numerical Investigations
    7.5.4  Theoretical Analysis on Size-Dependent Stress-Strain
  Model
  7.6  Compressive Failure of FRP-Confined Concrete Column
    7.6.1  Experimental Investigations on CFRP-Confined RC
  Column
    7.6.2  Numerical Investigations on CFRP-Confined RC
  Column
    7.6.3  Numerical Investigations on GFRP-Confined Concrete
  Column
  7.7  Compressive Failure of CFST Columns
    7.7.1  Numerical Investigations on Ordinary CFST Columns
    7.7.2  Numerical Investigations on LWACFST Columns
  7.8  Size Effect Law for Axial-Loaded Confined Concrete
  Columns
    7.8.1  Basic Assumptions
    7.8.2  Size Effect Law for Nominal Axial Compressive
  Strength
    7.8.3  Validation of Size Effect Law
  7.9  Summary
  References
8  Seismic Performances and Size Effect in Columns
  8.1  Compression-Shear Failure in Stocky RC Columns
    8.1.1  Seismic Tests on Failure of Stocky RC Columns
    8.1.2  Simulations on Failure of Stocky RC Columns
  8.2  Flexural-Compressive Failure of RC Columns
    8.2.1  Seismic Tests on Failure of RC Columns
    8.2.2  Simulations on Failure of RC Columns
  8.3  Compression-Shear Failure in CFST Columns
    8.3.1  Simulations on Failure of CFST Columns
    8.3.2  Simulated Results and Size Effect Analysis
  8.4  Compression-Shear Failure in FRP-Confined Concrete
  Columns
    8.4.1  Simulations on Failure of FRP-Confined Concrete
  Columns
    8.4.2  Simulated Results and Size Effect Analysis
  8.5  Size Effect Law for Compression-Shear Failure of Concrete
  Columns
    8.5.1  Basic Assumptions
    8.5.2  Size Effect Law for Nominal Shear Strength
    8.5.3  Validation of Size Effect Law
  8.6  Summary
  References
9  Size Effect on Shear Failure of RC Beam-to-Column Joints
  9.1  Shear Failure of Interior RC Beam-to-Column Joints
    9.1.1  Seismic Tests on Interior RC Beam-to-Column Joints
    9.1.2  Simulations on Interior RC Beam-to-Column Joints
  9.2  Shear Failure of Exterior RC Beam-to-Column Joints
    9.2.1  Seismic Tests on Exterior RC Beam-to-Column Joints
    9.2.2  Simulations on Exterior RC Beam-to-Column Joints
  9.3  Size Effect Law for Shear Failure of Beam-to-Column Joints
    9.3.1  Basic Assumptions
    9.3.2  Size Effect Law for Shear Strength
    9.3.3  Validation of the Theoretical Formula
  9.4  Summary
  References