全部商品分类

您现在的位置: 全部商品分类 > 数理化学科 > 数理化学科 > 数学

Cavitation Erosion

  • 定价: ¥139
  • ISBN:9787030676146
  • 开 本:16开 平装
  •  
  • 折扣:
  • 出版社:科学
  • 页数:192页
  • 作者:Can Kang//Haixia...
  • 立即节省:
  • 2020-01-01 第1版
  • 2020-01-01 第1次印刷
我要买:
点击放图片

导语

  

内容提要

  

    本书以空蚀这一工程中的重要现象为主题,从理论和实验两个层面解释空蚀现象的成因和工况参数对空蚀的影响。书中首先向读者展示近年来的空蚀实例,加深读者对空蚀的理解;进而借助超声和射流空蚀实验装置分析空蚀发生的机理;通过先进的空蚀实验方法和检测技术,对液体介质和实验材料对空蚀的影响进行重点解释,以质量损失、表面形貌、残余应力等为空蚀表征参数,系统地分析材料的空蚀行为,其中涉及材料的微观结构的材料的宏观参数。本书中不但涉及常规的金属材料,还对形状记忆合金这一特殊材料对空蚀的响应进行分析,探讨空蚀对形状记忆性能的影响,拓宽读者的专业视野。

目录

Contents
Chapter 1 Fundamentals of cavitation erosion
  1.1  Definition of cavitation erosion
  1.2  Causes of cavitation
    1.2.1  Cavitation inception
    1.2.2  Cavitation evolution
  1.3  Cavitation erosion
    1.3.1  Development of cavitation erosion
    1.3.2  Resistance of material to cavitation erosion
  1.4  Parameters influencing cavitation erosion
    1.4.1  Liquid properties
    1.4.2  Standoff distance
  1.5  Summary
Chapter 2 Experimental methods for cavitation erosion
  2.1  Cavitating waterjet
  2.2  Cavitation erosion through water tunnel
  2.3  Rotating disk cavitation erosion experimental rig
  2.4  Ultrasonic cavitation erosion experimental rig
  2.5  Evaluation of the extent of cavitation erosion
  2.6  Methods for detecting the capability of cavitation erosion
    2.6.1  Hydrophone
    2.6.2  Acoustic emission sensor
    2.6.3  Laser Doppler vibrometer
    2.6.4  Polyvinylidene fluoride sensor
  2.7  Summary
Chapter 3 Cavitation erosion of different materials
  3.1  Introduction
  3.2  Experimental methodology
  3.3  Materials and properties
    3.3.1  Aluminum alloy
    3.3.2  Copper alloy
    3.3.3  Titanium alloy
  3.4  Comparison of ultrasonic cavitation of selected materials
    3.4.1  Cumulative mass loss
    3.4.2  Microstructure
    3.4.3  Surface morphology and roughness
    3.4.4  Microhardness
  3.5  Electron backscatter diffraction method
  3.6  Summary
Chapter 4 Effects of liquid medium on cavitation erosion of copper alloy
  4.1  Introduction
  4.2  Experimental approach
    4.2.1  Experimental rig
    4.2.2  Sample preparation
    4.2.3  Cavitation erosion experiments
  4.3  Effects of liquid medium on cavitation erosion
    4.3.1  Cumulative mass loss rate
    4.3.2  Evaluation of residual stress
    4.3.3  Surface morphology
    4.3.4  Microstructure of eroded surface
    4.3.5  Microhardness
  4.4  Effects of the concentration of NaHCO3 solution on cavitation erosion
    4.4.1  Cumulative mass loss
    4.4.2  Microstructure of eroded surfaces
    4.4.3  Surface morphology
    4.4.4  Evaluation of residual stress
    4.4.5  Microhardness
  4.5  Cavitation erosion of copper alloy in seawater
    4.5.1  SEM images
    4.5.2  Three-dimensional surface morphology
  4.6  Summary
Chapter 5 Cavitation erosion through cavitating waterjet
  5.1  Introduction
  5.2  Effects of inlet pressure on waterjet pattern
  5.3  Effects of standoff distance on mass loss
  5.4  Effects of liquid temperature on cavitation erosion
    5.4.1  Cumulative mass loss
    5.4.2  Microstructure of eroded specimens
    5.4.3  Surface topology at different cavitation erosion time
  5.5  Cavitation erosion distribution over specimen surface
    5.5.1  Copper alloy
    5.5.2  Aluminum alloy
  5.6  Cavitation erosion of 304 stainless steel
  5.7  Summary
Chapter 6 Effects of liquid medium temperature on cavitation erosion of CuZnAl shape memory alloy
  6.1  Introduction
  6.2  Experimental set-up
    6.2.1  Experimental rig
    6.2.2  Specimen preparation
    6.2.3  Cavitation erosion experiment
  6.3  Results and discussion
    6.3.1  Cumulative mass loss
    6.3.2  Effects of liquid temperature on eroded surface
    6.3.3  Surface morphology
  6.4  Discussion on mechanisms of cavitation erosion
  6.5  Effects of standoff distance on cavitation erosion of CuZnAl SMA
    6.5.1  Cumulative mass loss and mass loss rate
    6.5.2  Metallographic structure
    6.5.3  Surface microstructure
    6.5.4  Analysis of DSC measurement results
    6.5.5  X-ray diffraction analysis
  6.6  Influence of exposure time on shape memory performance
    6.6.1  Metallographic structure
    6.6.2  Surface morphology
    6.6.3  Results of DSC measurement
  6.7  Summary
Chapter 7 Combination of cavitation erosion and corrosion
  7.1  Introduction
  7.2  Experimental setup
    7.2.1  Experimental apparatus
    7.2.2  Specimen preparation
    7.2.3  Experimental process
  7.3  Effects of concentration of NaCl solution on cavitation erosion
    7.3.1  Microstructure of aluminum bronze after cavitation erosion
    7.3.2  Three-dimensional surface morphology
    7.3.3  Surface roughness and cumulative mass loss
    7.3.4  Result of electrochemical test
  7.4  Effect of cavitation erosion time on cavitation erosion
    7.4.1  Cumulative mass loss and mass loss rate
    7.4.2  Surface microstructure
    7.4.3  Surface roughness
    7.4.4  Surface hardness
  7.5  Summary
Chapter 8 Further studies on cavitation erosion
  8.1  Cavitation erosion induced signals
  8.2  Cavitation erosion of curved surface
  8.3  Numerical simulation of cavitation erosion
References