全部商品分类

您现在的位置: 全部商品分类 > 经 济 > 工商管理 > 商业文秘

磁性纳米材料合成及其生物医学应用(英文版)(精)

  • 定价: ¥198
  • ISBN:9787030612816
  • 开 本:16开 精装
  •  
  • 折扣:
  • 出版社:科学
  • 页数:371页
  • 作者:编者:Yanglong Ho...
  • 立即节省:
  • 2019-01-01 第1版
  • 2019-01-01 第1次印刷
我要买:
点击放图片

导语

  

内容提要

  

    本书旨在介绍磁性纳米材料的性质、控制合成与修饰方法及其在生物医学领域的应用。从纳米磁学的基本原理出发,介绍了磁性纳米材料的基本特性以及由此产生的潜在应用前景。以最具代表性的氧化铁纳米颗粒为例,详细介绍了其制备、表面修饰及生物医学应用潜力。进而基于磁性纳米材料及其复合物的优异性能与制备的可控性。书中重点总结了用于影像介导的可视化治疗的方法,并讨论了磁性纳米复合材料。

目录

Foreword
Preface
Introduction
  Chapter 1  Nanomagnetism: Principles, Nanostructures, and Biomedical Applications
    1.1  Introduction
    1.2  Nanomagnetic effects
      1.2.1  Single domain and superparamagnetism
      1.2.2  Exchange-coupling effect
      1.2.3  Exchange bias effect
    1.3  Magnetism of nanomaterials
      1.3.1  Magnetism of NPs
      1.3.2  Magnetism of nanoplates
      1.3.3  Magnetism of nanorings
    1.4  Biomedical applications of nanomagnetism
      1.4.1  T2 MRI contrast agents
      1.4.2  Magnetic hyperthermia
      1.4.3  Biosensors
    1.5  Conclusion
    References
Controlled Synthesis and Modification
  Chapter 2  Chemical Synthesis of Magnetic Nanocrystals: Recent Progress
    2.1  Introduction
    2.2  Chemical synthesis of single-component magnetic NCs
      2.2.1  Metal oxides
      2.2.2  Metals and alloys
      2.2.3  Metal carbides, phosphides, and chalcogenides
    2.3  Chemical synthesis of multi-component magnetic NCs
      2.3.1  Core/shell heterostructure
      2.3.2  Oligomer-like heterostructure
      2.3.3  Anisotropically shaped material-based heterostructure
    2.4  Chemical synthesis of hollow/porous magnetic NCs
      2.4.1  Fe-based hollow/porous NCs
      2.4.2  Mn-based hollow/porous NCs
    2.5  Summary and perspectives
    References
  Chapter 3  Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Coating Techniques for Biomedical Applications
    3.1  Introduction
    3.2  Fe3O4 and γ-Fe2O3
    3.3  Size-induced magnetism evolution and application mechanisms
    3.4  Synthesis approaches
      3.4.1  Physical vapor deposition (PVD)
      3.4.2  Chemical vapor deposition (CVD)
      3.4.3  Electrodeposition
      3.4.4  Hydrothermal
      3.4.5  Co-precipitation
      3.4.6  High-temperature (thermal) decomposition of organometallic precursors
    3.5  Surface coating for biomedical application
      3.5.1  Au coating
      3.5.2  SiO2 coating
      3.5.3  TaOx coating
      3.5.4  Polymer coating
      3.5.5  Small molecular coating
      3.5.6  Carbon coating
    3.6  Conclusions and perspectives
    References
  Chapter 4  Surface Modification of Magnetic Nanoparticles in Biomedicine
    4.1  Introduction
    4.2  Surface modification with organic molecules
    4.3  Coating modification with macromolecules
      4.3.1  Polymer coating
      4.3.2  Liposome and micelle encapsulation
    4.4  Coating modification with inorganic materials
      4.4.1  Silica coating
      4.4.2  Metal element coating
    4.5  Conclusions and outlook
    References
Diagnosis and Therapy
  Chapter 5  Magnetic Nanoparticle-Based Cancer Nanodiagnostics
    5.1  Introduction
    5.2  Magnetic resonance imaging
    5.3  Diagnostic magnetic resonance
    5.4  Multifunctional MNPs for multimodal probing
    5.5  Conclusion and future prospects
    References
  Chapter 6  Magnetic Microbubble: A Biomedical Platform Co-constructed from Magnetics and Acoustics
    6.1  Introduction
    6.2  Magnetic nanoparticles and magnetic characteristics
      6.2.1  Preparation, surface modification, assembly of magnetic nanoparticles
      6.2.2  Special features of magnetic nanoparticles
      6.2.3  Biomedical applications of magnetic nanoparticles
      6.2.4  Ultrasonic characteristics of magnetic nanoparticles liquid
    6.3  Microbubble formalism and acoustic characteristics
      6.3.1  Design and preparation of microbubbles
      6.3.2  Actions of MBs with ultrasound waves
    6.4  Magnetic and acoustic character of magnetic microbubbles (MMBs)
      6.4.1  Fabrication of magnetic microbubbles
      6.4.2  Acoustic response of magnetic microbubbles
      6.4.3  Magnetic response of magnetic microbubbles
    6.5  Applications of magnetic microbubbles in biomedicine
      6.5.1  Multimodal imaging of MMBs
      6.5.2  Ultrasound assisted drug delivery of MMBs
      6.5.3  Magnetic field-controlled drug delivery and release of MMBs
    6.6  Summary and perspectives
    References
  Chapter 7  Multifunctional Magnetic Nanoparticles for Magnetic Resonance Image-guided Photothermal Therapy for Cancer
    7.1  Introduction
    7.2  ICG-loaded MNPs for MR/fluorescence bimodal image-guided PTT
      7.2.1  Fabrication of ICG-loaded SPIO NPs
      7.2.2  In vivo MR/fluorescence bimodal imaging of ICG-loaded SPIO NPs
      7.2.3  In vivo photothermal therapy with ICG-loaded SPIO NPs
    7.3  Gold-nanoshelled magnetic cerasomes for MRI-guided photothermal therapy
      7.3.1  Cerasomes combine the advantages of both liposomes and silica nanoparticles
      7.3.2  Contrast-enhanced MRI imaging using GNMCs
      7.3.3  Synergistic e.ect in killing cancer cells using GNMCs
    7.4  Gold-nanoshelled magnetic nanocapsules for MR/ultrasound bimodal image-guided photothermal therapy
      7.4.1  SPIOs-embedded PFOB nanocapsules with PEGylated gold shells (PGS-SP NCs)
      7.4.2  Bimodal US/MRI contrast imaging capability of PGS-SP NCs
    7.5  Conclusion and perspectives
    References
  Chapter 8  Magnetic-mediated Hyperthermia for Cancer Treatment: Research Progress and Clinical Trials
    8.1  Cancer hyperthermia
    8.2  Overview of magnetic-mediated hyperthermia (MMH)
      8.2.1  Working mechanism and brief introduction to MMH
      8.2.2  Categories of MMH
    8.3  Research progress of MMH
      8.3.1  IIH by thermoseeds and magnetic stent hyperthermia
      8.3.2  AEH for liver cancer
      8.3.3  Magnetic hyperthermia by MNPs
    8.4  Clinical applications of MMH
      8.4.1  Clinical trials of MMH by thermoseeds
      8.4.2  Clinical trials of MSH
      8.4.3  Clinical Trials of MNH
      8.4.4  Clinical trials of AEH
    8.5  Multifunctional magnetic devices for cancer multimodality treatment
      8.5.1  Multifunctional magnetic device for thermoradiotherapy
      8.5.2  Multifunctional magnetic devices for thermochemotherapy
    8.6  Conclusions and remarks
    References
  Chapter 9  Magnetic Nanoparticle-based Cancer Therapy
    9.1  Introduction
    9.2  MNPs-based cancer therapy
      9.2.1  Magnetic hyperthermia
      9.2.2  Magnetic specific targeting
      9.2.3  Magnetically controlled drug delivery
      9.2.4  Magnetofection
      9.2.5  Magnetic switches for controlling cell fate
      9.2.6  Recently developed therapies
    9.3  Conclusions and perspectives
    References
  Chapter 10  Composite Magnetic Nanoparticles: Synthesis and Cancer-related Applications
    10.1  Introduction
    10.2  Controlled synthesis of composite nanoparticles
      10.2.1  Dumbbell-like nanoparticles
      10.2.2  Core a shell nanoparticles
      10.2.3  Core/satellite- or flower-like NPs
    10.3  Applications
    10.4  Summary and perspective
    References
  Chapter 11  Formation of Multifunctional Fe3O4/Au Composite Nanoparticles for Dual-mode MR/CT Imaging Applications
    11.1  Introduction
    11.2  Synthesis or formation of Fe3O4/Au CNPs
      11.2.1  “Dumbbell-like" structured CNPs
      11.2.2  “Core/shell" structured CNPs
    11.3  Dual-mode MR/CT imaging applications of Fe3O4/Au CNPs
    11.4  Concluding remarks and outlooks
    References
Biocompatibility
  Chapter 12  Using Magnetic Nanoparticles to Manipulate Biological Objects
    12.1  Introduction
    12.2  Protein separation
    12.3  Magnetofection
    12.4  Manipulation of cellular organelles
    12.5  Separation and detection of bacteria
    12.6  Manipulation of cells
    12.7  Manipulation of organs
    12.8  Conclusion
    References
  Chapter 13  Toxicity of Superparamagnetic Iron Oxide Nanoparticles: Research Strategies and Implications for Nanomedicine
    13.1  Introduction
    13.2  Mechanism of toxicity
    13.3  In vitro cytotoxicity
    13.4  In vivo toxicity of SPIONs
    13.5  Blood compatibility
    13.6  Biodistribution and elimination
    13.7  In silico assays for nanotoxicity
    13.8  Surface engineering for SPIONs-based nanomedicine
    13.9  Conclusions and perspectives
    References
  Perspective
    References